Real-time data compression with Bicephalous Convolutional Auto-Encoder

Speaker: Yi Huang* Collaborators: Yihui Ren*, Jin Huang[†]

Brookhaven National Laboratory *Computational Science Initiative and †Physics Department

Sept. 9, 2021

Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout and DAQ system [Ref. "EIC readout overview" by Fernando Barbosa]

- ► EIC signal data rate is low and we aim to stream readout all variety of collision signal
- Experiment data may be noisy and filled with background hits
- Experiment data can be too large and expensive to fit in persistent storage limit

Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout and DAQ system [Ref. "EIC readout overview" by Fernando Barbosa]

- EIC signal data rate is low and we aim to stream readout all variety of collision signal
- Experiment data may be noisy and filled with background hits
- Experiment data can be too large and expensive to fit in persistent storage limit

Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout and DAQ system [Ref. "EIC readout overview" by Fernando Barbosa]

- ➤ EIC signal data rate is low and we aim to stream readout all variety of collision signal
- Experiment data may be noisy and filled with background hits
- Experiment data can be too large and expensive to fit in persistent storage limit

Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout and DAQ system [Ref. "EIC readout overview" by Fernando Barbosa]

- ➤ EIC signal data rate is low and we aim to stream readout all variety of collision signal
- Experiment data may be noisy and filled with background hits
- Experiment data can be too large and expensive to fit in persistent storage limit

Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout and DAQ system [Ref. "EIC readout overview" by Fernando Barbosa]

- ► EIC signal data rate is low and we aim to stream readout all variety of collision signal
- Experiment data may be noisy and filled with background hits
- Experiment data can be too large and expensive to fit in persistent storage limit

Goal

Using machine learning for data compression and noise filtering.

Time projection chamber (TPC) data

- ➤ Time projection chamber is a popular choice of main tracking detector for both RHIC and EIC experiments
 - Using the sPHENIX TPC data model for this study: high data rate and well modeled device
 - Algorithm would be applicable for EIC tracker and calorimeter too
- Compression: TPC data dominates the data volume
- Noise filtering: TPC data may contain a high amount of noise (> 50%) from the experiment background
- ▶ **High throughput** to match TPC data taking

sPHENIX @ RHIC, 2023-2025 sPHENIX Technical Design Report

One of the EIC detector concepts, ~ 2030 arXiv:1402.1209

TPC data in this study

Preparing for the toughest

In this study, we use the 10% central Au + Au collision with 170kHz pile up, which is busiest event in sPHENIX.

TPC data in this study

Preparing for the toughest

In this study, we use the 10% central Au + Au collision with 170kHz pile up, which is busiest event in sPHENIX.

Time projection chamber zoom-in

Time projection chamber zoom-in

The Amount of Data Generated by TPC

- ▶ Data format: 10-bit integer (ADC value range $\in [0, 1023]$)
- ▶ Number of voxels: (azimuth \times z \times layer)
 - ▶ Outer layer group: $2304 \times 498 \times 16 \approx 18$ M;
 - ▶ Middle layer group: $1536 \times 498 \times 16 \approx 12$ M;
 - ▶ Inner layer group: $1152 \times 498 \times 16 \approx 9M$
- ▶ Digitization frequency: 20MHz;

Frame Frequency: 80KHz

Uncompressed data rate: ~ 30 Tera bits per second Average compressed data rate via SAMPA ASIC: ~ 2 Tbps

The Amount of Data Generated by TPC

- ▶ Data format: 10-bit integer (ADC value range $\in [0, 1023]$)
- ▶ Number of voxels: (azimuth \times z \times layer)
 - ▶ Outer layer group: $2304 \times 498 \times 16 \approx 18$ M;
 - ▶ Middle layer group: $1536 \times 498 \times 16 \approx 12$ M;
 - ► Inner layer group: $1152 \times 498 \times 16 \approx 9M$
- ▶ Digitization frequency: 20MHz;

Frame Frequency: 80KHz

Uncompressed data rate: ~ 30 Tera bits per second

Average compressed data rate via SAMPA ASIC: \sim 2Tbps

The Amount of Data Generated by TPC

- ▶ Data format: 10-bit integer (ADC value range $\in [0, 1023]$)
- ▶ Number of voxels: (azimuth \times z \times layer)
 - ▶ Outer layer group: $2304 \times 498 \times 16 \approx 18$ M;
 - ▶ Middle layer group: $1536 \times 498 \times 16 \approx 12$ M;
 - ▶ Inner layer group: $1152 \times 498 \times 16 \approx 9M$
- ▶ Digitization frequency: 20MHz;

Frame Frequency: 80KHz

Uncompressed data rate: ~ 30 Tera bits per second

Average compressed data rate via SAMPA ASIC: \sim 2Tbps

Lossy Compression Algorithms

There are many existing compression algorithms designed for simulation-heavy scientific data represented by dense matrices of high-precision floating-point values.

- ➤ SZ: Error-bounded lossy compressor for HPC data https://github.com/szcompressor/SZ
- ➤ ZFP: Compressor for integer and floating-point data stored in multidimensional arrays

 https://github.com/LLNL/zfp
- ► MGARD: MultiGrid adaptive reduction of data https://github.com/CODARcode/MGARD

Problems with existing compressors

Hand-crafted and manually-tuned to suit data, missing learnable noise filtering.

Lossy Compression Algorithms

There are many existing compression algorithms designed for simulation-heavy scientific data represented by dense matrices of high-precision floating-point values.

- ➤ SZ: Error-bounded lossy compressor for HPC data https://github.com/szcompressor/SZ
- ➤ ZFP: Compressor for integer and floating-point data stored in multidimensional arrays

 https://github.com/LLNL/zfp
- ► MGARD: MultiGrid adaptive reduction of data https://github.com/CODARcode/MGARD

Problems with existing compressors

Hand-crafted and manually-tuned to suit data, missing learnable noise filtering.

Why we think it should work

- Convolutional neural network

 (an NN architecture specialized in processing high volume image data)
- ► Auto encoder

 (an NN encoder learns its own encoding rule with the help from an NN decoder)

Why we think it should work

- Convolutional neural network

 (an NN architecture specialized in processing high volume image data)
- ► Auto encoder

 (an NN encoder learns its own encoding rule with the help from an NN decoder)

Why we think it should work

- ➤ Convolutional neural network (an NN architecture specialized in processing high volume image data)
- ► Auto encoder

 (an NN encoder learns its own encoding rule with the help from an NN decoder)

Desirable properties of a neural encoder

Data-driven coding rule to optimize domain specific tasks, such as noise filtering.

Example of on-going auto-encoder study in modern data acquisition

Auto-encode evaluated for on-detector data compression for CMS HGC [Reference to talk: https://indico.fnal.gov/event/46746/contributions/210450/]

Compact Muon Solenoid High-Granularity Calorimeter

Proposed data flow with auto-encoder on application-specific integrated circuit

A basic idea

Problem with the basic idea

The distribution:

- ▶ is bi-modal
- ▶ is unbalanced
- is skewed (having a sharp edge at 6)
- ▶ has a long and slender tail

Problem with the basic idea

The distribution:

- ▶ is bi-modal
- ▶ is unbalanced
- is skewed (having a sharp edge at 6)
- ▶ has a long and slender tail

Problem with the basic idea

The distribution:

- ▶ is bi-modal
- ▶ is unbalanced
- is skewed (having a sharp edge at 6)
- ▶ has a long and slender tail

Bicephalous Convolutional Neural Encoder

Two heads is better than one

- \triangleright Classification decoder $D_{\rm c}$ learns to recognize truth signal
- \triangleright Regression decoder $D_{\rm r}$ learns to approximate the value of truth signal
- ▶ Decompressed data = regression masked by classification

Bicephalous Convolutional Neural Encoder

Two heads is better than one

- \triangleright Classification decoder $D_{\rm c}$ learns to recognize truth signal
- \triangleright Regression decoder $D_{\rm r}$ learns to approximate the value of truth signal
- Decompressed data = regression masked by classification

Bicephalous Convolutional Neural Encoder

Two heads is better than one

- \triangleright Classification decoder $D_{\rm c}$ learns to recognize truth signal
- \triangleright Regression decoder $D_{\rm r}$ learns to approximate the value of truth signal
- ▶ Decompressed data = regression masked by classification

Input

- ➤ a 30° degree sector along the azimuth direction (192 columns for the outer layer group)
- \triangleright a half the z-direction (249 rows)
- ▶ one layer group (16 layers)

Results I: AE v.s. Bicephalous AE

Compression ratio is 1:27

(1:3 for SAMPA ASIC for this busiest event)

A Missing Ingredient – Input Transform

borrowed an idea from [Y. Alanazi, et al.]

Input transform: $\mathcal{T}(x) = \log(x - 64)/6$, x > 64Inverse transform: $\mathcal{T}^{-1}(y) = 64 + \exp(6y)$, $x \in \mathbb{R}$

Results II. Bicephalous AE with Input Transform

Result III. Ablation Study

Result IV-i. Comparing with Existing Compression Algorithms

Result IV-ii. Comparing with Existing Compression Algorithms

Result V. Metrics Summary

Table: Performance comparison

	Compr. ratio↑	MSE↓	$\log \mathrm{MAE}\!\downarrow$	PSNR↑
MGARD	27	626.28	1.213	3.223
SZ	24	369.69	0.302	3.452
ZFP	19	219.48	0.267	3.678
AE	27	227.61	0.349	3.703
Bicephalous AE	27	230.59	0.193	3.706
Bicephalous AE w. Transform	27	218.33	0.185	3.724

Summary and Future Direction

- ► Test auto-encoder-based compression and noise filtering network on highest occupancy TPC data.
- ▶ Reach 1 : 27 compression ratio.
- ► Future directions
 - ▶ Integrating simulation ground truth into the training to improve noise rejection.
 - ▶ Working well for downstream applications (for example: clustering and tracking efficiency and position resolution)
 - ▶ Data acquisition hardware integration

Summary and Future Direction

- ► Test auto-encoder-based compression and noise filtering network on highest occupancy TPC data.
- ▶ Reach 1 : 27 compression ratio.
- ► Future directions:
 - ▶ Integrating simulation ground truth into the training to improve noise rejection.
 - ▶ Working well for downstream applications (for example: clustering and tracking efficiency and position resolution)
 - ▶ Data acquisition hardware integration